18. J. Park, et al., Tactile-direction-sensitive and stretchable electronic skins based on human-skin-

inspired interlocked microstructures. Journal of ACS Nano, 2014. 8(12): pp. 12020–12029.

19. Z. Chen, et al., Flexible piezoelectric-induced pressure sensors for static measurements based on

nanowires/graphene heterostructures. Journal of ACS Nano, 2017. 11(5): pp. 4507–4513.

20. Z. Pei, et al., A fully 3D printed electronic skin with bionic high resolution and air permeable porous

structure. Journal of Colloid & Interface Science, 2021. 602: pp. 452–458.

21. S. Chun, et al., Self-powered pressure-and vibration-sensitive tactile sensors for learning technique-

based neural finger skin. Journal of Nano Letters, 2019. 19(5): pp. 3305–3312.

22. S. Sundaram, et al., Learning the signatures of the human grasp using a scalable tactile glove.

Journal of Nature, 2019. 569(7758): pp. 698–702.

23. Y.R. Jeong, et al., Highly stretchable and sensitive strain sensors using fragmentized graphene foam.

Journal of Advanced Functional Materials, 2015. 25(27): pp. 4228–4236.

24. S.J. Gerbode, et al., How the cucumber tendril coils and overwinds. Journal of Science, 2012.

337(6098): pp. 1087–1091.

25. Y. Zhao, et al., Highly conductive 3D metal-rubber composites for stretchable electronic applications.

Journal of APL Materials, 2019. 7(3): pp. 031508.

26. S.M. Won, et al., Multimodal sensing with a three-dimensional piezoresistive structure. Journal of

ACS Nano, 2019. 13(10): pp. 10972–10979.

27. Q. Hua, et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional

sensing. Journal of Nature Communications, 2018. 9(1): pp. 1–11.

28. K. Sim, et al., Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional

electronics for wearable human-machine interfaces. Journal of Science Advances, 2019. 5(8):

pp. eaav9653.

29. M.K. Kim, et al., Soft-packaged sensory glove system for human-like natural interaction and control

of prosthetic hands. Journal of NPG Asia Materials , 2019. 11(1): pp. 1–12.

30. J.C. Lotters, et al., A sensitive differential capacitance to voltage converter for sensor applications.

IEEE Transactions on Instrumentation; Measurement, 1999. 48(1): pp. 89–96.

31. M.-J. Kim, et al., Controlling the gate dielectric properties of vinyl-addition polynorbornene copo­

lymers via thiol–ene click chemistry for organic field-effect transistors. Journal of Materials

Chemistry C, 2021. 9(14): pp. 4742–4747.

32. C. Qian, et al., Multi-gate organic neuron transistors for spatiotemporal information processing.

Journal of Applied Physics Letters, 2017. 110(8): pp. 083302.

33. D. Wu, et al., The effects of motif net charge and amphiphilicity on the self-assembly of functionally

designer RADA16-I peptides. Journal of Biomedical Materials, 2018. 13(3): pp. 035011.

34. L.R. Hochberg, et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic

arm. Journal of Nature, 2012. 485(7398): pp. 372–375.

35. D.J. Weber, R. Friesen, and L.E. Miller, Interfacing the somatosensory system to restore

touch and proprioception: Essential considerations. Journal of Motor Behavior, 2012. 44(6): pp.

403–418.

36. G. Hong and C.M. Lieber, Novel electrode technologies for neural recordings. Nature Reviews

Neuroscience, 2019. 20(6): pp. 330–345.

37. E.S. Boyden, et al., Millisecond-timescale, genetically targeted optical control of neural activity.

2005. Journal of Nature Neuroscience, 8(9): pp. 1263–1268.

38. T.-I. Kim, et al., Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.

Journal of Science, 2013. 340(6129): pp. 211–216.

39. H. Shin, et al., Multifunctional multi-shank neural probe for investigating and modulating long-

range neural circuits in vivo. Journal of Nature Communications, 2019. 10(1): pp. 1–11.

40. A. Canales, et al., Multifunctional fibers for simultaneous optical, electrical and chemical inter­

rogation of neural circuits in vivo. Journal of Nature Biotechnology, 2015. 33(3): pp. 277–284.

41. M. Dipalo, et al., Intracellular and extracellular recording of spontaneous action potentials in

mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Journal of Nanoletters,

2017. 17(6): pp. 3932–3939.

Bioinspired Prosthetic Interfaces

155